
You can design programs to control a robot turtle at a high level and then 
simulate, test and debug your program against any number of virtual 
landscapes. The landscapes tend to be designed to test line following, 
obstacle avoidance or maze solving challenges of varying complexity.

A line following challenge is perhaps the most popular of all and these can 
range from the simple to the surprisingly tricky. The basic idea is that the 
turtle is placed on (or needs to hunt for) the line and then has to follow the line 
around the route. 

With an obstacle avoidance challenge the robot turtle needs to move around 
obstacles that are in its way. This can also be used together with a line follower challenge to force a change of direction around the 
circuit.
The Funduino turtle includes an ultrasonic range finder mounted on a stepper motor which makes it ideal for obstacle avoidance 
challenges. Visual designer includes high level access functions such as ping() to help control the turtle and the environment 
containing the obstacles can easily be created or changed in a graphics package.

A maze solver, or a maze escape, is probably the most difficult of the standard challenges for robot turtles. It can be drawn in many 
ways, including obstacles or simply using dead ends in an attempt to trap the turtle.
The controlling program needs a ‘memory’ of routes travelled as well as sufficient logic to turn and/or reverse on the line. The Zumo 
turtle with its gyro and compass has accurate orientation methods such as turnSouth() in Visual Designer to help with this, but it has 
no range finder and is best used with dead-end maze challenges. By contrast, the Funduino has a range finder to avoid obstacles 
but has no position encoding at all so the turning of the turtle is quite challenging.

What is it?

What can you do with it?

Arduino™ Turtle Simulation

Arduino Turtle Simulation in Proteus is a breakthrough tool for teaching and 
learning embedded control. It is supplied with the Proteus Visual Designer for 
Arduino AVR product, meaning that students can create turtle firmware either 
as a flowchart or as an Arduino C++ program. Visual Designer makes the task 
much simpler by providing high level methods for control such as forwards(int 
speed) and stop() for the motor drive and ping() for the range finder. This enables 
students to focus on the control of the turtle and watch something happening 
quickly.

During a simulation the turtle needs an environment in which to move while it is 
executing the students program. These can be created in seconds in a graphics 
package, such as MS Paint, with the simple rules that black lines are to be 
followed and anything drawn in red is to be avoided. Students can therefore be 
assigned the exact same challenge and they don’t need real hardware or large 
amounts of space to test and perfect their solutions. 
 
It is so fast and easy to change the ‘landscape’ that programs can then be tested against progressively more extreme environments 
(e.g. right angles, figure of eight, dead ends) with a few clicks of the mouse.

Write turtle programs as a Flowchart 
or with Arduino C++

Create Virtual Maps, Mazes and Playgrounds 
for the turtle in seconds

Simulate the Turtle executing the 
program in the virtual Map or Maze

Program the real hardware turtle at the press 
of a button

Free with Visual Designer!!



Programming for Arduino turtles is easier for students with Proteus. They can choose to code via flowchart or Arduino C++ 
and in either case are provided with a library of functions that help control the turtle.

Proteus can simulate the turtle program in a virtual playground that you design. This enables early success for students who 
can each see their program in action on screen without needing to set up or share a cumbersome hardware setup. 

Educators can create and deploy simple graphics files (PNG) containing maps, obstacles or mazes to students. This means 
that each student can be assigned the exact same challenge and that work can be completed at home or in any classroom 
with computers. 

Class exercises can quickly be tailored to suit multiple abilities. Students can progress from flowchart to C++ programming 
and maps and mazes of increasing difficulty can easily be created and supplied to students.

Programs can be fully debugged in the Proteus software. Not only can students set breakpoints and single step debug but 
they can see the turtle behaviour on screen as they step through their code. This promotes real understanding and helps 
teach valuable testing and debugging skills.

Simulating the turtle in a virtual environment means that students can work independently, without need to share scarce 
hardware resources or space in the classroom. It also isolates from unwanted real-world effects; for example, a classroom full 
of robots using ultrasonic range sensors would result in a lot of confusion as sensors pick up random sonar bursts from other 
robots.

Students can gain deeper understanding of the electronics involved by placing instrumentation (e.g. oscilloscope) on the 
schematic and taking measurements. 

Since Proteus simulates the exact same HEX file as the real Arduino, students can program the physical turtle at any time at 
the press of a button. This enables them to test whether their programs account for mechanical forces such as momentum 
and inertia as well as watching their algorithms come to life.

What’s included?

Why use it?

Turtle Simulation is part of the Proteus Visual Designer for Arduino AVR product. 
In addition to support for the Funduino and the Zumo turtle robots you get generic 
simulation models for Arduino AVR microcontrollers, simulation capabilities for 
dozens of popular Arduino shields and Grove peripherals and the ability to create 
programs at a higher level with a flowchart. Both of the supported turtle robots can 
be easily purchased online and between them cover the most common hardware 
specifications.

The Funduino robot includes an ultrasonic distance measuring module mounted 
on a rotatable head, making it well suited to obstacle avoidance problems. There 
are three line hunting sensors underneath the chassis and a motor driver board 
to control the wheels and the stepper motor on the robot head. There is however no position encoders of any kind; the system is 

entirely open loop, making precise positioning and turning of the robot quite challenging.

The Zumo is a more advanced robot, running on tracks driven from 2 brushed DC 
gearmotors and including six IR reflectance sensors for line following / edge detection. It 
also includes a piezo sounder and 3-axis gyroscope and compass, enabling the absolute 
orientation of the robot via LOGO type functions in Visual Designer (e.g. turnEast()). The 
Zumo does not include optical rangefinders.

All of this is modelled with exceptional attention to detail and is simulated down to 
cycle-accurate instruction level by the Proteus simulator. The full professional range 
of debugging tools is available so students can set breakpoints and single step their 
programs if bugs or problems are found.

And, since the exact same program is simulated as is used by the real hardware, students 
can then program the hardware robot at the press of a button from inside Proteus.

Labcenter Electronics Ltd. Head Office 
21 Hardy Grange, Grassington, BD23 5AJ, United Kingdom. 
Tel: (+44) 1756 753440, Fax: (+44) 1756 752857 
Web: www.labcenter.com, Email: info@labcenter.com.

Labcenter Electronics Ltd. USA Office 
411 Queen Street, Suite 201, Newmarket, Ontario, Canada, L3Y 2G9 
Toll Free: (+1) 866-499-8184, Fax: (+1) 905-898-0683 
Web: www.labcenter.com, Email: info@labcenter.com

The Arduino and Genuino names and logos are registered trademarks of Arduino LLC and their respective owners in various territories. 
The Proteus Visual Designer for Arduino AVR product is not directly connected or endorsed by any Arduino trademark owner.


